Si-tracker simulation status

G. Mitsuka

Aug. 12, 2016

Outline

- 1. Modification of the track finding and track fit using the EMCal clusters
- 2. Checking how additional Si-"z"-layer helps track finding and track fit

Track finding/fit using the EMCal clusters

I'm modifying the track finding and track fit schemes using the EMCal clusters;

- 1) track finding by using MAPS + Si-tracker + EMCal
 - loading the EMCal cluster node in the track reconstruction codes (PHG4HoughTransform)
 - finding and fit were basically working, but the best-fit z-vertex seems shifting to +2-3 cm (investigation ongoing)
 - probably we need an additional Si-strip 'z'-layer? (see page 4-5.)
- 2) hit information (r, ϕ) in a thiner outer tracker are associated to each candidate track found in the step 1)
 - I assume a thiner outer tracker cannot determine z-position
 - the outer tracker's candidate hits are searched by an intersection of each track and each outer tracker layer.
 - it looks working.
- 3) and then track fit by using all layers.
 - debug in progress, so no report today.

Si-strip "z"-layer

- Track finding and fit using EMcal were basically working, but the best-fit z-vertex seems shifting to +2-3 cm (investigation ongoing)
 probably we need an additional Si-strip 'z'-layer?
- Checking how additional Si-"z"-layer helps track finding and track fit;
 I'm currently using the non-pileup G4 simulation and need to see benefits of the z-layer in pileup simulations.

Effects of the Si-"z"-layer to Y mass dist.

• Inner tracker

- First MAPS layer with 100 % live area: R = 2.335 cm.

• Intermediate tracker, Type-I (z-layer)

- four layers of silicon-strip detectors: R = 5 cm
- one strip corresponds to 80 µm (ϕ) x 80 µm (z) (I wanted to implement at 10 mm (ϕ) x 80 µm (z), but large ϕ size significantly reduce track finding efficiency. Thus I'm temporarily using fine ϕ segments.)

Intermediate tracker, Type-II (φ-layer)

- four layers of silicon-strip detectors: R = 6, 8, 10, 12 cm
- one strip corresponds to 80 μ m (ϕ) x 12 mm (z)
- one chip per one cell, so no strip ganging.

Outer tracker

- a chamber consisting of six pads/layers placed at R = 77.5, 79.0, 80.5, 82.0, 83.5, and 85.0 cm
- modeled as very thin si-strip with $\delta\phi=100\mu m$ and dz=1mm

Single upsilon (with internal Bremsstrahlung)

ref: 1 MAPS + Si-strip (4 φ-layers) + thiner outer tracker gives σ_{1S} = 78 MeV/c.